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Abstract. The energy level spacing distribution of a tight-binding Hamiltonian is monitored
across the mobility edge for a fixed disorder strength. Any mixing of extended and localized
levels is avoided in the configurational averages, thus approaching the critical point very closely
and with high energy resolution. By finite-size scaling the method is shown to provide a
very accurate estimate of the mobility edge and of the critical exponent for a cubic lattice
with Lorentzian distributed diagonal disorder. Since no averaging in wide energy windows is
required, the method appears as a powerful tool for locating the mobility edges in more complex
models of real physical systems.

The metal–insulator (MI) transition in disordered systems is still attracting considerable
interest with special regard to the critical universal properties [1, 2]. Even in the absence
of any interaction, the lack of a full analytical treatment ford = 3 has given rise to a very
slow convergent process [3–6] for the numerical evaluations, generally based on finite-size
scaling [7]. An alternative to the standard transfer matrix method [8] has been recently
given by the energy level statistics method (ELSM) [9, 10] which has reached the status
of a very reliable tool, yielding accurate predictions for the transition points and critical
properties. Localized and delocalized levels have been shown [9, 10] to follow different
universal spacing distributionsP(s) in the thermodynamic limit. Precisely, in the metallic
regime the overlapping states follow the general Wigner–Dyson random-matrix theory [11],
and the distribution of the distances between successive levels is well described by the
Wigner surmise

PW(s) = π

2
s exp

(
−π

4
s2
)

(1)

which is characterized by the typical level repulsion sinceP(0) = 0. Heres is the level
distance in units of the average local level spacing1E = 1/[ND(E)] whereN is the
total number of states andD(E) is the averaged density of states (DoS) normalized to 1.
On the other hand for localized levels the lack of overlap determines a different statistical
behaviour described by the Poisson distribution

PP (s) = e−s (2)

where level repulsion is absent. For finite systems an intermediate regime shows up in the
crossover region, and the corresponding critical ensemble has been recently characterized
and shown to be described by a third universal distribution [12–14]. Then, in order
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to extrapolate towards the thermodynamic limit, finite-size scaling has been extensively
used, allowed by the numerical calculation of any one-parameter scaling function which
characterizes the distributionP(s) along the crossover [4, 13]. The critical ensemble
which determines the critical properties has been recently shown to be universal and even
insensitive to the changes of symmetry determined by a field [15] or spin–orbit coupling
[16], or to changes in the nature of the disorder [17]. Thus the method seems to be of
practical interest for determining the critical properties of more realistic phenomenological
models.

However, although large clusters have been recently considered up to 283 sites [6],
some shortcomings can be found in the generally accepted ELSM procedure. (i) In order to
improve the statistical analysis a wide energy band is usually considered, thus averaging over
a dishomogeneous class of levels. In fact, at the critical point, the mixing of extended and
localized levels cannot be ruled out even for the most favourable case of a box distribution
which yields quite a wide interval of homogeneously extended states at the band centre.
As a consequence the critical point cannot be reached with good accuracy. (ii) Only a box
distribution for the diagonal matrix levels is well suited for such an approach, since for
a generic peaked distribution the use of a wide band would be unacceptable. Thus any
realistic calculation, based on a phenomenological model, is ruled out. (iii) The scaling
function is usually evaluated for discrete fixed values of the disorder strength parameterW ,
and the critical point is then recovered by interpolation. Since any new value ofW requires
a new average over the configurations, a very small step forW around the critical point
becomes prohibitive. (iv) No information is obtained about the trajectory of the mobility
edge versusW below the critical point, unless the statistics is determined in very small
energy ranges.

In this paper, in order to deal with such difficulties, we propose the first attempt to
characterize the transition through a scaling function of the level energyE. Below the critical
disorder, a mobility edge separates localized and extended levels in the thermodynamic
limit. Thus the spacing distributionP(s) changes discontinuously at the mobility edge
from PP (s) to PW(s). For a finite system the transition is rounded and a continuous
crossover is observed. Any monotonic functionalα of P(s) could in principle be employed
for characterizing the spacing distribution as a function of the energyE across the transition
[4]. According to the one-parameter scaling theory of localization [18] the coherence length
of the states is a function of the level energyξ(E) diverging at the mobility edgeEc as

ξ ∼ (E − Ec)−ν . (3)

For a finite system, neglecting boundary effects, the functionalα depends onE through
the only parameterξ(E)/L whereL is the linear dimension of the system. Thus finite-
size scaling yields the mobility edgeEc and the critical exponentν provided that the
functionalα can be determined as a function ofE across the transition, for a fixed disorder
strengthW . We choose forα the second momentα = 〈s2〉, and directly evaluate such
a functional on the level configurations for anyE by a new method which avoids both
averaging inside a wide window of levels and any fit for the distributionP(s). Apart from
statistical fluctuations, we obtainα as a continuous function ofE across the mobility edge
which can be approached with the desired accuracy within the same set of configurations
(only one set of configurations, with a fixed disorder distribution, is required for each
value ofL). Moreover, we avoid any mixing between localized and extended states in the
evaluation ofα which now acquires a different value for any different energy.

In order to illustrate the method we consider a standard tight-binding Hamiltonian on a
cubic lattice with nearest-neighbour hopping and diagonal disorder described by a peaked



Mobility edge and level statistics 5983

Lorentzian

g(ε) = 1

π

W

W 2+ ε2
. (4)

The mobility edge is obtained for several values ofW , and the critical exponentν =
1.30± 0.05 is recovered in excellent agreement with previous reports [3, 4, 13, 16]. Note
that the field-theoretical argument reported in [3] for the universality of the critical exponent
does not hold for the Lorentzian distribution since now the moments are not well defined.
Thus the agreement with the estimates obtained for the box and Gaussian distribution [3],
and for the binary percolation model [17] should be understood in the framework of a more
general theoretical argument.

The Hamiltonian reads

Ĥ =
∑
i

εic
†
i ci + t

∑
〈ij〉

c
†
i cj (5)

whereci , c
†
i are annihilation and creation operators for a local state on the cubic lattice site

i, and the diagonal levelεi is randomly distributed according to the Lorentzian (4). All
energies are reported in units of the nearest-neighbour hopping termt , thus the system is
entirely characterized by the widthW of the distribution.

The eigenvalues are exactly evaluated for each random configuration of a finite
M ×M ×M cubic lattice withM = 6, 7, 8, 9, 10. No special boundary conditions have
been imposed and a total number of 104 configurations have been considered for each lattice
sizeM.

The choice of the second momentα = 〈s2〉 for characterizing the spacing distribution
comes from statistical convenience: no fit is required or knowledge of the distribution, since
α is computed by direct average over the configurations. Moreover, all the configurations
contribute on average, and both the large and smalls regions are taken into account. Such
a functional has a monotonic behaviour from the Poisson limit valueα = 2 to the Wigner
surmise opposite limitα = 4/π ≈ 1.27, as can be easily checked from equations (1) and (2).

The second moment has already been used for characterizing the spacing distribution
P(s) as a function of the strengthW of the disorder [13]. In that work a wide energy
window was used in order to decrease the statistical fluctuations. Conversely in this work,
at the cost of a larger fluctuation ofα, we evaluate a basically independent average for each
value ofE, at a fixed disorder strength. For any energyE, and for each configuration, we
find two consecutive eigenvaluesEi , Ei+1 satisfyingEi < E < Ei+1. Then the variable
y = (Ei+1−Ei)/1E is averaged over theNconf random configurations of the system. Note
that the average level spacing1E is a function ofE, and is independently evaluated by the
average DoS. Since each couple of consecutive eigenvalues has a probability proportional
to y of containing the pointE, then the generic moment follows

〈sn〉 = 〈yn−1〉. (6)

From the central limit theorem the statistical fluctuation ofα may be estimated as
1α2 ≈ (〈s4〉 − 〈s2〉2)/Nconf. In the Poisson limit, where the fluctuations are larger, and for
Nconf = 104, we obtain from equation (2)1α ≈ 0.045 which is slightly more than 2%.

It is instructive recovering the Poisson limit fort = 0, and for a generic distribution
g(ε). Since the Hamiltonian is diagonal, the DoS is directly given by the distributiong for
the diagonal level. At a fixed energyE the average spacing is1E = 1/[Ng(E)] where the
total number of states isN = M3. Following an argument first considered by Hertz [19],
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the probabilityP(s) ds must be equal to the probability that no levels exist betweenE and
E+s1E times the probability that a level does exist betweenE+s1E andE+(s+ds)1E:

P(s) ds =
[

1−
∫ s

0
P(s ′) ds ′

]
N1Eg(E + s1E) ds. (7)

Dividing by g(E + s1E) ds and differentiating with respect tos we obtain

P ′(s)
P (s)

= − 1

g(E)

[
g(E + s1E)− g′(E + s1E)

Ng(E + s1E)
]
. (8)

Such an equation may be directly integrated, yielding a different distributionP(s) for each
value ofE. In the very special case of a box distribution the functiong is constant and the
Poisson distribution is recovered for anyE. In general, assumingN large, we may expand
the right-hand side of equation (8) in powers ofs1E, then integrating

P(s) = P(0) exp

[
−s − g′

Ng2

(
1

2
s2− s

)
+O(1/N2)

]
. (9)

Thus, for largeN , the distributionP(s) tends to the Poisson universal limit at anyE, and
for any distributiong. However, the convergence is not uniform, since it is controlled
by the parameterg′/(Ng2) which is strongly energy dependent and diverging in the limit
E → ∞ for any regular normalized distribution. In other words, deep in the tail of
the DoS an increasingly large system size is required for recovering the Poisson limit
α → 2 as the energyE increases. Strong deviations from the limit distribution are then
expected in the tails, where the size required for the convergence could be prohibitive for any
numerical calculation. Once more we show the importance of avoiding level mixing inside
a wide energy window, since not all the levels are generally described by the same spacing
distribution even in the case of strong localization (t = 0). The convergence towards the
Poisson limit must be checked as a function ofE before undertaking any serious calculation,
in order to fix a bound to the accessible range of energy for a given system size. For the
Lorentzian (4)g′/(Ng2) ∼ E/(NW) and, as we checked by a numerical test, forN ≈ 103,
up to E ≈ 7W the deviations from the Poisson limitα = 2 are negligible as shown in
figure 1. However, we must stress that whenever the ratioE/W increases a larger cluster
size is required in order to reach the Poisson limit. A progressively worse accuracy is
expected when exploring the band tails (E large) or in the limitW → 0, where the present
method would require prohibitive values ofN .

In figure 1 the functionalα is compared fort = 0 andt 6= 0, at a fixed disorder strength
and sample size. Fort 6= 0 the second momentα approaches the Wigner limit around the
band centre, indicating that for such an energy range the states are extended. In the band
tail α tends to the Poisson limit, and a crossover region shows up aroundE = Ec.

In order to get rid of the statistical fluctuations ofα, the data aroundEc have been fitted
by a polynomial. Data forW = 2 are shown in figure 2: for different sizesL = M − 1
the fitted curves all cross at one point with surprising accuracy; in fact the fit procedure
allows an averaging over a large number of fluctuating estimates ofα, thus improving the
accuracy without spoiling the energy dependence of the curves. The crossing pointE = Ec
corresponds to the mobility edge of the infinite system. ForW = 2 averaging over all the
crossing points yields a very accurate determination of the mobility edgeEc = 3.8± 0.05
despite the small sizes considered in the calculation. The standard error is mainly due to a
residual small shift of the mobility edge, and an even more accurate determination ofEc
would be achievable by increasing the system size.

According to the one-parameter scaling hypothesis, linearizingα aroundEc, we obtain

logL = ν log |α′(Ec, L)| + constant (10)
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Figure 1. The second momentα versus the energyE inside the band fort = 0 (full circles)
and t 6= 0 (open circles). The disorder strength is fixed atW = 2, and the sample size is
M = 10. All the energies are in units oft . An arrow in the crossover region shows the position
of the mobility edgeEc = 3.8 as determined by finite-size scaling. The broken curve is the
corresponding averaged DoS scaled by an arbitrary factor.

where the derivativeα′ can be evaluated with good accuracy at the critical point by the
polynomial fit parameters. Thus the method allows a very close approach to the critical
point, while avoiding any mixing between localized and extended states. The critical
exponentν has been determined by a linear fit of equation (10) forM = 6, 7, 8, 9, 10
yielding ν = 1.35± 0.05 for W = 2 and ν = 1.26± 0.05 for W = 2.5. The average
valueν = 1.30 is very close to previous estimates obtained by several authors for the box
distribution [3, 4, 9, 13], for the Gaussian and binary distributions [3], in the presence of a
field [15] or of spin–orbit coupling [16], and even for the off-diagonal binary disorder of
a percolation system [17]. All these estimates were found by averaging over a more or
less wide energy window of levels at the centre of the DoS. In such a case the monitored
transition corresponds to the disappearance of any extended state from the system. For the
percolation system the occurrence of a more realistic peaked DoS has forced the authors
[17] to focus on narrow windows. A more detailed study of the mobility edge in that system
would be achievable by the present method. All these predictions are in slight contrast to
recent findings by the transfer matrix method [5] and standard ELSM [6] which report a
larger estimate for the critical exponent (ν = 1.45 andν = 1.54 respectively) which is not
confirmed by the present work.

A tentative trajectory for the mobility edge has been recovered by repeating the
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Figure 2. Polynomial fit of the data forα in the crossover energy range, forM = 6, 7, 8, 9, 10
andW = 2. At the band centreE ≈ 0 the lower curve corresponds to the largest size. The
trajectory of the mobility edge is shown in the inset (squares) and compared with the data
reported in [20] (circles).

calculation at different values ofW . No crossing occurs forW > 4, indicating that the
critical point must lie below that value. ForW = 1.5, 2.0, 2.5, 3.0, 3.25 and 3.5 the mobility
edge has been found at the energyEc = 4.2, 3.8, 3.3, 2.4, 1.8 and 0.0 respectively. Thus
we may locate the critical disorder atWc = 3.5 ± 0.1. The trajectory of the mobility
edge is shown in the inset of figure 2, and compared with previous data reported by Bulka
et al [20]. We must observe that any extrapolation of our data towards theW = 0 limit
does not make any sense since, as previously discussed below equation (9), whenever the
ratio Ec/W increases, the cluster size becomes too small to reach the Poisson limit, thus
determining a progressive underestimate of the critical edge positionEc. Such a shortcoming
is a consequence of the ELSM method by itself when applied to realistic distributions, and
could in part be avoided by employing large cluster sizes and approximate diagonalization
routines.

As an important by-product, we have noticed the existence of a universal critical value
αc = 1.5 ± 0.03 for all the considered disorder strengthsW , thus pointing toward the
existence of a criticalP(s) distribution which is expected to be universal [12–15]. Our
estimate forαc is not too far from the previous evaluationαc = 1/0.7 = 1.43 reported by
Vargaet al [13] for a box distribution.

In summary we have shown that the ELSM provides a very accurate way of determining
the mobility edge and the critical exponent even for more realistic disorder distributions.
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The scaling function has been determined for any energy pointE avoiding any mixing
of localized and extended states in the configurational average. Moreover, a standard
fit procedure allows a very close approach to the critical point with a small statistical
error without spoiling the energy dependence of the scaling function. Thus the method
provides a powerful tool for detecting the mobility edge in the framework of more complex
phenomenological models of real physical systems. As a by-product we have shown that
the Lorentz distributed random system belongs to the same universality class of the box
and the Gaussian, as is evident from a comparison of the critical exponents. We notice
that, in spite of being generally expected, such universality cannot be proved by the weaker
field-theoretical argument of [3] which is based on the assumption that the distribution has
well-defined moments.
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